首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87706篇
  免费   5009篇
  国内免费   10篇
  2021年   1085篇
  2020年   948篇
  2019年   939篇
  2018年   2316篇
  2017年   2052篇
  2016年   2800篇
  2015年   3713篇
  2014年   3793篇
  2013年   5049篇
  2012年   5903篇
  2011年   5265篇
  2010年   3411篇
  2009年   2593篇
  2008年   4170篇
  2007年   3968篇
  2006年   3935篇
  2005年   3315篇
  2004年   3350篇
  2003年   2979篇
  2002年   2727篇
  2001年   2121篇
  2000年   1980篇
  1999年   1532篇
  1998年   715篇
  1997年   512篇
  1996年   554篇
  1995年   501篇
  1992年   963篇
  1991年   885篇
  1990年   867篇
  1989年   929篇
  1988年   767篇
  1987年   781篇
  1986年   721篇
  1985年   787篇
  1984年   667篇
  1983年   576篇
  1979年   706篇
  1978年   522篇
  1977年   526篇
  1975年   618篇
  1974年   658篇
  1973年   633篇
  1972年   593篇
  1971年   521篇
  1970年   585篇
  1969年   645篇
  1968年   598篇
  1967年   507篇
  1966年   499篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
31.
In male Wistar rats, the inhalation exposure to acrylonitrile (AN), 271 mg X m-3, 8 hours a day, 5 days a week, did not affect protein sulfhydryl concentration in liver and blood and decreased glutathione concentration in the liver, but not in the brain at the end of the fifth exposure. The urinary excretion of the main AN metabolites, thioethers (AN-mercapturic acids) and thiocyanate was proportional to the inhaled AN concentration (57, 125, 271 mg X m-3, respectively) in a single exposure for 12 hours, and their mutual ratio was greatly different from that after injection of AN. The results revealed that the urinary excretion of thioethers is a very sensitive and dose-related indicator of exposure to AN and extrapolation of the results indicates that the exposure to AN concentration below 10 mg X m-3 could thus be demonstrated.  相似文献   
32.
In recent years, Staphylococcus epidermidis has become a major nosocomial pathogen and the most common cause of intravascular catheter-related bacteremia, which can increase morbidity and mortality and significantly affect patient recovery. We report a draft genome sequence of Staphylococcus epidermidis AU12-03, isolated from an intravascular catheter tip.  相似文献   
33.
1. In rat kidney cortex, outer and inner medulla the development of activities of seven enzymes was investigated during postnatal ontogeny (10, 20, 30, 60 and 90 days of age). The enzymes were selected in such a manner, as to characterize most of the main metabolic pathways of energy supplying metabolism: hexokinase (glucose phosphorylation, HK), glycerol-3-phosphate dehydrogenase (glycerolphosphate metabolism or shunt, GPDH), triose phosphate dehydrogenase (glycolytic carbohydrate breakdown, TPDH), lactate dehydrogenase (lactate metabolism, LDH), citrate synthase (tricarboxylic acid cycle, aerobic metabolism, CS), malate NAD dehydrogenase (tricarboxylic acid cycle, intra-extra mitochondrial hydrogen transport, MDH) and 3-hydroxyacyl-CoA-dehydrogenase (fatty acid catabolism, HOADH). 2. The renal cortex already differs metabolically from the medullar structures on the 10th day of life. It displays a high activity of aerobic breakdown of both fatty acids and carbohydrates. Its metabolic capacity further increases up to the 30th day of life. 3. The outer medullar structure is not grossly different from the inner medulla on the 10th day of life. Further it differentiates into a highly aerobic tissue mainly able to utilize carbohydrates. It can, however, to some extent, also utilize fatty acids aerobically and produce lactate from carbohydrates anaerobically. 4. The inner medullar structure is best equipped to utilize carbohydrates by anaerobic glycolysis, forming lactate. This feature is already pronounced on the 10th day of life, its capacity increases to some extent during postnatal development, being highest between the 10th and the 60th day of life.  相似文献   
34.
Biomechanics and Modeling in Mechanobiology - Cell migration is a process of crucial importance for the human body. It is responsible for important processes such as wound healing and tumor...  相似文献   
35.
36.
These siblings of a Czech family aged 21, 19 and 6 years, respectively, with congenital dyserythropoietic anemia, type II, (HEMPAS) are reported. In two elder siblings ferrokinetic studies revealed a rapid plasma 59Fe clearance, markedly decreased erythrocyte incorporation and shortened 51Cr red-cell survival. Direct anti-globulin test was found positive in one of them. Further investigations revealed low values of blood plasma cholesterol, total lipids, beta-lipoproteins, beta-carotine and vitamin E and A as well as low values of the prothrombin complex. Liver biopsy demonstrated siderosis and disseminated intravascular coagulation in the liver in both patients. The possible reasons for these humoral aberrations are discussed.  相似文献   
37.
In Escherichia coli, two enzymes catalyze the synthesis of methionine from homocysteine using methyltetrahydrofolate as the donor of the required methyl group: cobalamin-dependent and cobalamin-independent methionine synthases. Comparison of the mechanisms of these two enzymes offers the opportunity to examine two different solutions to the same chemical problem. We initiated the research described here to determine whether the two enzymes were evolutionarily related by comparing the deduced amino acid sequences of the two proteins. We have determined the nucleotide sequence for the metE gene, encoding the cobalamin-independent methionine synthase. Our results reveal an absence of similarity between the deduced amino acid sequences of the cobalamin-dependent and cobalamin-independent proteins and suggest that the two have arisen by convergent evolution. We have developed a rapid one-step purification of the recombinant cobalamin-independent methionine synthase (MetE) that yields homogeneous protein in high yield for mechanistic and structural studies. In the course of these studies, we identified a highly reactive thiol in MetE that is alkylated by chloromethyl ketones and by iodoacetamide. We demonstrated that alkylation of this residue, shown to be cysteine 726, results in complete loss of activity. While we are unable to deduce the role of cysteine 726 in catalysis at this time, the identification of this reactive residue suggests the possibility that this thiol functions as an intermediate methyl acceptor in catalysis, analogous to the role of cobalamin in the reaction catalyzed by the cobalamin-dependent enzyme.  相似文献   
38.
39.
The preconditioning response conferred by a mild uncoupling of the mitochondrial membrane potential (Δψm) has been attributed to altered reactive oxygen species (ROS) production and mitochondrial Ca2 + uptake within the cells. Here we have explored if altered cellular energetics in response to a mild mitochondrial uncoupling stimulus may also contribute to the protection. The addition of 100 nM FCCP for 30 min to cerebellar granule neurons (CGNs) induced a transient depolarization of the Δψm, that was sufficient to significantly reduce CGN vulnerability to the excitotoxic stimulus, glutamate. On investigation, the mild mitochondrial ‘uncoupling’ stimulus resulted in a significant increase in the plasma membrane levels of the glucose transporter isoform 3, with a hyperpolarisation of Δψm and increased cellular ATP levels also evident following the washout of FCCP. Furthermore, the phosphorylation state of AMP-activated protein kinase (AMPK) (Thr 172) was increased within 5 min of the uncoupling stimulus and elevated up to 1 h after washout. Significantly, the physiological changes and protection evident after the mild uncoupling stimulus were lost in CGNs when AMPK activity was inhibited. This study identifies an additional mechanism through which protection is mediated upon mild mitochondrial uncoupling: it implicates increased AMPK signalling and an adaptive shift in energy metabolism as mediators of the preconditioning response associated with FCCP-induced mild mitochondrial uncoupling.  相似文献   
40.

In this review, we address the regulatory and toxic role of ·NO along several pathways, from the gut to the brain. Initially, we address the role on ·NO in the regulation of mitochondrial respiration with emphasis on the possible contribution to Parkinson’s disease via mechanisms that involve its interaction with a major dopamine metabolite, DOPAC. In parallel with initial discoveries of the inhibition of mitochondrial respiration by ·NO, it became clear the potential for toxic ·NO-mediated mechanisms involving the production of more reactive species and the post-translational modification of mitochondrial proteins. Accordingly, we have proposed a novel mechanism potentially leading to dopaminergic cell death, providing evidence that NO synergistically interact with DOPAC in promoting cell death via mechanisms that involve GSH depletion. The modulatory role of NO will be then briefly discussed as a master regulator on brain energy metabolism. The energy metabolism in the brain is central to the understanding of brain function and disease. The core role of ·NO in the regulation of brain metabolism and vascular responses is further substantiated by discussing its role as a mediator of neurovascular coupling, the increase in local microvessels blood flow in response to spatially restricted increase of neuronal activity. The many facets of NO as intracellular and intercellular messenger, conveying information associated with its spatial and temporal concentration dynamics, involve not only the discussion of its reactions and potential targets on a defined biological environment but also the regulation of its synthesis by the family of nitric oxide synthases. More recently, a novel pathway, out of control of NOS, has been the subject of a great deal of controversy, the nitrate:nitrite:NO pathway, adding new perspectives to ·NO biology. Thus, finally, this novel pathway will be addressed in connection with nitrate consumption in the diet and the beneficial effects of protein nitration by reactive nitrogen species.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号